Перейти к содержимому

 


БЛОКИРУЕТ ПРОВАЙДЕР ? ИЛИ РОСКОМНАДЗОР ?

       ⇒ Используй Зеркало www.genplant.cc
       ⇒ Используй наш анонимайзер www.anonim.genplant.net
       ⇒ Переходи сразу на форум www.genplant.net/forum
       ⇒ Прямая ссылка в ЭНЦИКЛОПЕДИЮ ГРОВЕРА www.enka.genplant.net


Информация

  • Дабавлена: 04 Дек 2016 13:49
  • Просмотров: 4306
 


* * * * *
1 Рейтинг

Дорогой гровер. Не секрет, что ключевым фактором хорошего гровинга является освещение. Специально для тебя мы представляем статью, где вся необходимая информация собрана воедино. О неотъемлемой части выращивания читайте ниже.

 

Спектр света и расположение ламп

 

В общечеловеческом понимании, свет – это та часть электромагнитного излучения, которая видна человеческому глазу. Длины волн ~380—780нм. Волны разной длины в оптическом диапазоне воспринимаются глазом как отдельные цвета, все вместе – как белый свет.

 Однако в биологии и других естественных науках, этот термин понимается гораздо шире - к этому излучению также примыкают невидимые части спектра. И все части цветового диапазона играют важную роль в существовании любых видов организмов.

Свет является одним из самых главных условий существования и развития растений, благодаря ему в зеленых листьях растений проходят фотохимические реакции фотосинтеза. В ходе процесса фотосинтеза из воды и углекислого газа синтезируются сложные органические вещества, которые крайне необходимы для роста и развития растений.

Свет должен быть необходимого спектра и интенсивности для обеспечения быстрого роста растений. Свет состоит из разных цветовых диапазонов. Различные цвета в спектре, влияют на различные процессы.

 

Наиболее подходящим для биосинтеза и цветения являются диапазоны в красной области спектра (длина волны около 640-660 нм) и синей  (440-450 нм)

Для того, чтобы растение цвело, необходимы соответствующие части спектра и длина светового периода. Эти условия называются фотопериодом.

 

 

spectr.jpg

График интенсивности поглощения  растением света различной длины

 

То, что растениям не нужен зелёный свет – это ошибка из-за того, что кривая фотосинтеза в зелёном спектре имеет прогиб по отношению к красному и синему свету. Установлено, что зелёный свет полезен для фотосинтеза плотных листьев, стеблей. Благодаря своей высокой проникающей способности, зелёный свет хорошо проникает к листьям нижних ярусов, густых посевов растений

 

Фотосинтез, PAR

 

Фотосинтез у растений - это  процесс образования органических веществ из углекислого газа и воды под воздействием света и при участии хлорофилла.

 

 Хлорофилл – это зелёный  пигмент растений, участвующий в процессе фотосинтеза (поглощения двуокиси углерода из воздуха) и превращения солнечной энергии в такие химические связи, как образование углеводородов (сахаров и крахмала). В результате такого процесса фотосинтеза происходит  выделение кислорода.

 

spectr1.jpg

 

Как уже говорилось выше, флора  воспринимает свет иначе, чем люди.

 

На графике интенсивности поглощения видны эти различия, которые прослеживаются достаточно четко, и существует огромная разница между видимым  для людей спектром и теми его частями, которые необходимы растениям для роста и цветения.

Световые волны, которые нужны растениям, именуются фотосинтетически-активной волной спектра. При этом человеческие органы зрения видят только центр спектрального диапазона, а растения используют более широкий диапазон.

 

spectr2.jpg

Читать подробнее о фотосинтезе

 

Цветовая температура

 

Функция длины волны в оптическом диапазоне называется цветовой температурой. Измерение цветовой температуры происходит по шкале Кельвина в промежутке конкретного сегмента светового спектра.

 

Понятие «цветовая температура» дает лишь примерное представление о преобладании той или иной части видимого спектра. Точную информацию дают спектральные графики конкретной лампы. Лампы с одинаковым обозначением цветовой температуры могут иметь разный спектральный состав излучаемого ими света, обусловленный технологией производства.

 

spectr3.jpg

Шкала Кельвина

 

800 К– начало видимого темно-красного свечения раскалённых тел
1800 К– свет восхода и видимая часть света от свечи
1900–2200 К– натриевые лампы высокого давления
2360 К– лампы накаливания
2700–3200 K– люминесцентные, металлогалогеновые лампы (Warm light) тёплый свет, с преобладанием вкрасном диапазоне 52CRI
2800 К– Северное небо
3000 К– Галогенные лампы
4000–4200 К– люминесцентные, металлогалогеновые лампы (Cool light) холодный свет 62CRI
4200 К– белый дневной свет
5200–5500 К – металлогалогеновая лампа дневного света 100 CRI
5500 К – обычный солнечный свет
6200–6500 K – люминесцентные лампы (Day light) дневного света
Выше 8000 К– ультрафиолет (Black light) – ультрафиолетовое излучение

 

 

Категория лампы

Температура цветокоррекции, K

Тёплая

3000 K

Нейтральная

4000 K

Холодная

6000 K

 

Лампа

Температура в кельвинах

CRI

Прохладная белая

4150 K

62

Светло-белая

4150 K

62

Тёплая белая

3000 K

52

Насыщенного дневного света

8500 K

84

Живого света

5500 K

96

Дневного солнечного света

5300 K

100

 

 

spectr4.jpg

 

В данной таблице показана зависимость между активностью хлорофилла, цветовой температурой и типами ламп.

Металлогалогеновая лампа (ДРИ) дневного света с цветовой температурой 5500К отлично подходит для вегетации.

Натриевая лампа высокого давления (ДНАТ) с температурой 2200К  -лучшая лампа для цветения.

 

Измерение силы света

 

В физике присутствуют различные единицы измерения световой энергии: люкс, люмен и фут-свеча.

В люксах измеряется видимая освещенность для человеческого глаза.  Люкс (Lux)

Световой поток измеряется в люменах (Lm)

 Все эти величины не интересны для нас, так  как они относятся к общим физическим величинам, а не к конкретным спектральным частям, которые нужны растениям.

Поэтому, мы возвращаемся к той единице, которая нам нужна - к PAR, то есть фотосинтетическому активному излучению. Но так как не все виды излучения равны  по  характеристикам выделяемой энергии, то измерения в Ваттах PAR  не всегда достаточно, чтобы объяснить все тонкости. Наша с вами задача дать растениям больше синего цвета во время вегетативной стадии, а затем красный и желтый во время цветения и плодоношения, тем самым обеспечив флору тем, что они получают в природе во время смены сезонов: летом спектр в основном синий, а осенью – красный.

 

Фотометры (люксметры)

 

spectr5.jpg

 

Большая часть фотометров (или люксметров), доступных на данный момент в продаже, измеряют свет в фут-свечах или люксах Lx. Однако, как уже говорилось выше, подобные единицы не сильно помогают при работе с растениями, так как улавливают лишь ту часть, которая видна человеческому глазу и не показывают количество PAR Ватт и не измеряют фотосинтетическую реакцию. Но говорят об общем уровне освещённости и интенсивности источников излучения света.


Интенсивность

Интенсивность (она же напряжение) влияет на яркость ламп: чем выше интенсивность, тем ярче светят лампы. При правильном использовании этой характеристики, можно получить больше качественного урожая на один Ватт энергии.

 Называется величина световой энергии на единицу площади.

Другими словами, растения которые находятся на расстоянии 60 см от ламы, получают четверть того света, которое получало бы растение, находясь на расстоянии в 30 см. Если взять другие единицы, то лампы высокого напряжения, излучающие 100 000 люменов, доносят лишь 25000 люменов на расстоянии 60 см. 1 000 ваттные лампы высокого напряжения, излучающие 100000 исходных (начальных) люмен, доносят 11 111 люмен на расстоянии 90 см. Из этих цифр следует простой вывод: чем ближе растение находится от источника освещения. Тем больше PAR Ватт оно получает. Однако и здесь есть свои подводные камни – ни в коем случае нельзя ставить представителей флоры слишком близко. Это может нанести ожог  листьям и, в конечном итоге, погубить растение.

 

Использование искусственных источников освещения несет за собой определенный вывод: лампы утрачивают мощность обратно пропорционально квадрату расстояния. Это означает, что удвоение расстояния до лампы сокращает уровень освещенности в четыре раза. Об этом мы уже говорили, но возникает вопрос: на  каком расстоянии должна находиться лампа?

Лампа мощностью 400 ватт – на расстоянии 30 см, 600 ватт – 45 см, 1000 ватт – 60 см. Разумеется, эти величины приблизительны. Наличие поворачивающегося  вентилятора, прямо обдувающего растения снизу, помогает создавать поток воздуха и рассеивать тепло.

 


Закон обратных квадратов

 

spectr6.jpg

 

Закон обратных квадратов выводит интенсивность света в зависимости от расстояния

Данный закон определяет взаимосвязь между светом, излучаемым источником (лампой) и расстоянием. Согласно этому закону интенсивность света изменяется в обратной пропорции к расстоянию до источника, возведенному в квадрат.

 

Формула такова:

                И (интенсивность) = С (Свет) / Р (Расстояние в квадрате)

 

Например:  100 000 = 100 000/1
                       25 000 = 100 000/4
                       11 111 = 10 000/9
                       6250 = 100 000/16

 

Зависимость мощности лампы и расстояния можно увидеть при сравнении ДНаТ 250 и ДНаТ 600

 

spectr7.jpg

 

На расстоянии 1м 250 ДНаТ  выдает - 120 PAR и 4500 Lux  600Днат соответственно - 340 PAR  и 10000Lux

 

Получаемые люмены измеряются в ваттах на квадратный фут или в фут-свечах (fc). Одна фут-свеча равна количеству света, падающего на 1 м2 поверхности, расположенной на расстоянии 1 м от свечи.

Чем меньше растение получает люменов (или фотосинтетического излучения, как мы договорились обозначать интересующую нас часть спектра), тем медленнее оно растет, цветет и созревает. Это можно наблюдать как на открытом грунте, так и в индоре.

 

Расположение ламп

 

spectr8.jpg

Три 400-ваттные лампы могут освещать на 30–40% больше площади выращивания, чем одна 1000-ваттная лампа. Также 400- ваттные лампы можно подвешивать ближе к растениям.

 

spectr9.jpg

Три 600-ваттные лампы обеспечивают больше света, чем две 1000-ваттные лампы высокого напряжения.

 

Лампы меньшей мощности означают большее количество источников света, поэтому их можно размещать ближе к растениям. На каждый 15 см приближения к растениям, интенсивность света удваивается. Чем ниже эта интенсивность, тем больше растения тянутся к источнику света. При плохом освещении растения теряют эстетические свойства: редкая листва и тонкие ветки, раскиданные по стеблю, не только плохо смотрятся, но и показывают плохое самочувствие растения, что может привести к снижению урожая и плохой генетике в дальнейшем.

Увеличить выработку урожая можно, обеспечив всю площадь выращивания равномерным светом. Если освещение будет неоднородным, то какие-то листья будут находиться в тени, создаваемой другими листьями. А это, опять же, приводит к снижению выработки урожая. Поэтому, такие ветки стоит либо обрезать, либо перепланировать освещение.

 

spectr10.jpg

 

Листья всегда тянутся к свету

 

Листва сильных, хорошо освещенных растений всегда получает максимальное количество энергии. Определить положение лампы помогают рефлекторы, с помощью наблюдения можно рассчитать расстояние между самими источниками освещения и расстояние над растениями. Также можно наблюдать места на лампах, которые имеют более сильные показатели свечения – именно к ним тянутся ветки.

Опытные садоводы выбирают высокомощные лампы – 400, 600, 1000 ватт, так как такие лампы выделяют больше люменов на Ватт и их PAR-показатели гораздо  выше, чем у маленьких ламп, что вполне логично.

 

Хотя 400-ваттные лампы при правильной установке, производят меньше люмен на ватт, чем 1000-ваттные лампы, они доставляют больше полезного света растениям. 600 ваттная лампа обладает самой высокой способностью преобразования люмен на ватт (150 люмен на ватт), и может быть расположена ближе к растению, в отличие от 1000 ваттных ламп. Если 600 ваттная лампа находится близко к растениям, они получат максимум света.
 

1000 ваттная лампа высокой интенсивности (HID) излучает много света. Но при этом, она излучает много тепла, что может стать причиной ожогов листвы, если растение находится слишком близко к источнику освещения. Во многих случаях применение ламп с меньшей мощностью эффективнее. Например, две 400-ваттные лампы можно расположить ближе к растениям, чем одну 1000-ваттную, тем более, что две лампы источают свет с двух точек, что уменьшает площадь тени, а значит, повышает количество листьев, получающих свет.

 

Боковое освещение

 

spectr11.jpg

 

Не всегда получается удачно разместить лампы так, чтобы они вертикально давали максимальное количество света, необходимого густой листве. В таких случаях необходимо дополнительное размещение источников света  вдоль стен, сбоку от растения. Таким образом, свет попадает даже туда, куда не может пробиться освещение с помощью рефлекторов. При этом стоит подходить к вопросу с тщательностью: те же компактные флуоресцентные лампы для этого попросту не подходят (особенно, если основным источником являются лампы высокого напряжения).


Поворачивание растений

Один из вариантов решения проблемы с недостаточным количеством света – поворачивание растений. Такие действия необходимо проводить раз в два дня. При этом угол поворота не должен быть меньше, чем 90°, но и не больше 180°, что позволит обеспечить полноценный рост и развитие стебля и листьев. Также для этого необходимо выбирать лампы разного уровня выделения света, чтобы можно было создать различные уровни освещения.

Если поворачивать растения вручную, то они будут расти более однородно. Чем больше растения находятся на стадии цветения, тем в большем количестве света они нуждаются. Во время первых 3–4 недель цветения растения потребляют немногим меньше света, чем на протяжении завершающих 3–4 недель. Цветущие растения во время последних трех-четырех недель размещаются прямо под лампу, где свет ярче. Растения, которые только что были помещены в комнату цветения, могут находиться по периметру сада, а затем более зрелые растения сдвигаются к центру оранжереи. Такая хитрость поможет увеличить урожай на 5–10%.

 

При этом крупные растения бывает весьма затруднительно поворачивать. Для упрощения этого процесса можно приобрести блочные конструкции (об этом поговорим далее), либо поместить контейнер на телегу с колесами.

 

Расположение растений

 

spectr12.jpg

 

Самая большая интенсивность света – непосредственно под лампой. Для стимулирования равномерного роста расположите растения таким образом, чтобы они получали свет одинаковой интенсивности

Точно также обстоит дело с гровингом: листья на верхушках растений получают более интенсивный свет, чем листья у основания. Верхние листья затеняют нижние и поглощают световую энергию, в результате нижним листьям достается меньше световой энергии. Если нижние листья не будут получать достаточно света, они пожелтеют и отомрут, либо будет необходимо их обрезать еще до созревания. Высокие растения (1.8 метра), требуют больше времени для роста и дают больше урожая, чем более низкие, метровые растения. При этом урожай с самих макушек будет примерно одинаковый. В связи с недостатком света, высокие растения имеют больше соцветий ближе к верхушке (90–120 см) и меньше ближе к основанию стебля.

Высокие растения имеют тенденцию к образованию тяжелых шишек, чей вес стеблю сложно удерживать. Эти растения нуждаются в постоянной подвязке. Низкие растения лучше держат вес макушек, и у них больше цветочного веса, чем листового.

  • 0

Powered by Tutorials 1.5.0 © 2017, by Michael McCune
Все о выращивании конопли в домашних условиях © 2017 www.GenPlant.net